Power Supply Overlaid Communication and Common Clock Delivery for Cooperative Motion Control

Fumikazu Minamiyama †† Hidetsugu Koga ‡
Kentaro Kobayashi † Masaaki Katayama †

† Nagoya University, Japan
‡ Hokuriku Electric Power Co., Japan
†† YASKAWA Electric Corp., Japan

MST: Master
SLV: Slave

Command
Power
Common Clock

(DC)-PLC for Reduction of Wires
Communication of the Control Signal

- Multi-Carrier Modulation
 - Down-Link: OFDM, Up-Link: OFDMA

(DC)-PLC for Reduction of Wires

- MST: Master
- SLV: Slave

Common Clock for Synchronized motions

- Delivery of a high quality common clock signal to each slave to inform the starting time of actions

Spread Spectrum (SS)
- Continuous transmission
- High resolution (<1 us)
Reception of the Common

RX for Common Clock at the slaves

- MF
- Threshold
- Master Clock

Common Clock

MF Output

High energy

T_f

High resolution

Master Clock

Objective

Communication over the **DC Power lines** inside the Robot.

- Command/Response between a Master & Slaves
- Delivery of Common Clock for Cooperative Motion

Master Clock to Cue Slaves to Start

Control signal Δ_t: Interval of Command

- Command(OFDM)#0
- Response(OFDMA)#0
- Command(OFDM)#1

Down-Link

Up-Link

Start the action of Command #0

Start the action of Command #0

Crystal Oscillator

Action start time

Interval of Command

Action start time

Start the action of Command #0

Channel characteristics

- Band Limited (<35MHz)
- Frequency Selective

AMPLITUDE

PHASE

Gain [dB]

Phase [deg.]

0 10 20 30

0 180

-10 -20 -30

0 10 20 30

0 180

-720 -540 -360

0 10 20 30
Spectra of Signals

Control signal (OFDM(A)): \(L = 105 \) subcarriers

Common clock signal

Challenge:
cohabitation of control signal and clock

Down-Link

- SS \(\rightarrow \) OFDMA @Slaves
- OFDMA \(\rightarrow \) SS @Slaves

Same Channel for SS & OFDM: Flat Interference

Solution of Mutual Interference

- OFDM(A) \(\rightarrow \) SS: Process Gain of SS
- SS \(\rightarrow \) OFDM(A): Interference Cancellation

Different Channel for SS & OFDM: Colored Interference
Reduction of Influence of SS to OFDM(A)

System Parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Slaves K</td>
<td>3</td>
</tr>
<tr>
<td>Channel</td>
<td>Measured</td>
</tr>
<tr>
<td>Noise</td>
<td>None</td>
</tr>
</tbody>
</table>

Common Clock Signal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrier Frequency</td>
<td>15 MHz</td>
</tr>
<tr>
<td>Chip Interval</td>
<td>0.1 μs</td>
</tr>
<tr>
<td>PN Sequence (Interval N)</td>
<td>M sequences + 0 padding $(2048=2^{11})$ [bit]</td>
</tr>
</tbody>
</table>

Control Signal

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Lowest Carrier Frequency</td>
<td>2.19 MHz</td>
</tr>
<tr>
<td>Symbol duration Time</td>
<td>3.2 μs</td>
</tr>
<tr>
<td>The number of Subcarriers /Allocation</td>
<td>106/Slave with High Gain</td>
</tr>
<tr>
<td>Modulation</td>
<td>QPSK</td>
</tr>
</tbody>
</table>

System Requirement

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Hours a year</td>
<td>1.0512×10^7 s $(8h/day \times 365)$</td>
</tr>
<tr>
<td>Accuracy of Self-Running OSC</td>
<td>$\pm 100ppm$</td>
</tr>
</tbody>
</table>

- a pair losses of two successive command packets < once a year
- a misdetection of a start cue < once a year
- cue with timing error more than 1us < once a year

Requirements for Communication Part

[Reception performance]

Common Clock Signal (SS) : Prob. of False Alarm
Control Signal (OFDM(A)) : Symbol Error Rate (SER)

Required Conditions for Reception Performance

<table>
<thead>
<tr>
<th>Probability Type</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prob. of False Alarm ε_f</td>
<td>2.1×10^{-7}</td>
</tr>
<tr>
<td>Prob. of Miss Detection ε_m</td>
<td>3.2×10^{-1}</td>
</tr>
<tr>
<td>SER for Control Signal ε_S</td>
<td>3.19×10^{-6}</td>
</tr>
</tbody>
</table>
Down-Link

- SS → OFDMA @Slaves
- OFDMA → SS @Slaves

Same Channel for SS & OFDM: Flat Interference

Common Clock Signal

Receiver of Common Clock Signal (RX_c)

Control Signal +
Common Clock Signal

MF Output

\[\Theta : \text{Threshold for detection} \]

\[T_0, T_0 + N T t \]

PDF

Prob. of False Alarm

Prob. of Miss Detection

Reception Performance of the Common Clock Signal (Down-Link)

\[\theta : \text{Threshold of common clock} \]

\[10^{-7} \]

\[5 \]

\[4 \]

\[3 \]

\[2 \]

\[1 \]

\[0 \]

\[0.1 \]

\[0.2 \]

\[0.32 \]

\[0.4 \]

\[0.5 \]

Prob. Miss detection \(\varepsilon_m \)

\[\theta : \text{small} \]

\[\theta : 41.7 \]

\[\theta : 45.0 \]

\[\theta : \text{large} \]

\[\gamma_d = 14.5 \text{dB} \]

\[\gamma_d = \text{Control signal power (OFDM)} \]

\[\gamma_d = \text{Common clock signal power (SS)} \]

Requirement

\[\gamma_d < 14.5 \text{ dB} \]
Reception Performance of the Control Signal (Down-Link)

- In the case of using IC, at the $\gamma_d = 14.5\,[\text{dB}]$, $\text{SER} < 10^{-8}$ (required SER = 3×10^{-8})

Reception Performance of the Common Clock Signal (Up-Link)

- **Required Condition** $\gamma_u < 15\,[\text{dB}]$

- **Threshold of common clock** Θ:
 - $\Theta: \text{small}$
 - $\Theta: \text{large}$

- **Slave** $0,1,2$ ($\gamma_u = 15\,[\text{dB}]$)

- **Requirement** $\gamma_u < 15\,[\text{dB}]$

Reception Performance of the Control Signal (Up-Link)

- In the case of using IC, at the $\gamma_d = 15\,[\text{dB}]$, $\text{SER} < 10^{-8}$ (required SER = 3×10^{-8})
Conclusions

Propose
- A multiple servo control communication system in which the power supply overlaid communications
- Delivery of a common clock for cooperative motion control

Result
- Control signals and master clock can coexist in actually channel.

Cooperative Motion Control System

- Cooperative motion: Multiple machines work at the same time with each other.
- Robot group control
- Assembly lines
- Partner robots
- Control of moving machines
- Relocation of machines
- Saving of space

Performance of Wireless Cooperative Control

- Packet errors
- Control performance of each machine (stability, etc.)
- Synchronization of all machines

New measurement of performance is "the synchronization of all machines".

A Wireless Cooperative Motion Control System with Mutual Use of Control Signals

Tsugunori Kondo
Kentaro Kobayashi
Masaaki Katayama

Nagoya University, Japan
Conventional Control Signal Transmission

Conventional method
- One input and one output.

Mutual Use of Control Signals

Conventional method
- One input and one output
- The nature of wireless

Proposed method
- Multiple input and one output
- We consider to use the control signals of the other machines.

Purpose

A wireless control method for a cooperative motion system
- Mutual use of the control signals
 - Improvement of control performance and synchronization
- New measurement of performance
 - Synchronization of all machines

Rotary Inverted Pendulum

The pendulums are controlled to make their arm angles \(\phi[k] \) follow the target value while keeping the pendulums in an upright position \((\theta[k] = 0) \).

Basic model
- Bipedal walking robot
- Crane
- Rocket launching pad

Underactuated system
- One actuator for two degrees of freedom

\[u[k] : \text{Control information (torque)} \]
\[x[k] : \text{State information} \]
\[x[k] = [\theta[k] \ \dot{\theta}[k] \ \phi[k] \ \dot{\phi}[k]] \]