## Introduction to CDMA ALOHA

## 3. Access Control Techniques for CDMA ALOHA

Takaya Yamazato

Center for Information Media Studies,
Nagoya University
Nagoya 464-01, Japan
yamazato@nuee.nagoya-u.ac.jp

#### CDMA ALOHA



- Random access
- Simultaneous packet transmission
- High throughput performance
- Flexible transmission of multimedia signal

## Why Access Control?





- Improvement of maximum throughput
- No degradation of throughput in high offered traffic load

#### How?



- X Difficulty of carrier sensing by each user due to the low peak power transmission.
- X Fluctuation of channel load during a packet transmission
- A little throughput improvement by slotted system

## Access Control for CDMA ALOHA



- 1 Access control protocol should be based on the channel load status observed by hub-station
- 2 Packet access should be accomplished in accordance with control signal broadcast from hub-station
- 3 CDMA Unslotted ALOHA (CDMA U-ALOHA) is an appropriate candidate

## **Access Timing Delay**



 Time difference between channel load sensing and associated packet access timing

 Remarkable in satellite communication system

• GEO: 0.50 [sec]

• LEO: 0.02 [sec]

#### Access Control for CDMA ALOHA

- Transmission access control protocol
  - 1. Channel load sensing protocol (CLSP)
  - 2. Modified CLSP
- Retransmission control protocol
  - 3. Packet retransmission control (PRC)
- Transmission and retransmission control protocol
  - 4. Optimum access control protocol (OACP)
- CDMA Unslotted ALOHA systems with buffers

## System Model



- Centralized single-hop network
- DS/SS modulated packet
- Poisson generation of packet
- Equal power reception
- G: Offered load
  - L: Fixed packet length [bit]
- BER -- see (2.1)

#### **Transmission Control Protocol**



- Packet transmission is controlled by Hubstation
- Channel load sensing protocol (CLSP)
- 2. Modified CLSP

# Channel Load Sensing Protocol (CLSP)



- Hub-station observes the channel load, actual number of on-going packets
- According to the channel load, the information of permission or prohibition is broadcasted.
  - Users transmit according to such information.
  - Channel load is always kept less than or equal to the threshold, a.

## Throughput of CDMA ALOHA with CLSP



- Significant improvement in throughput
- No degradation in high offered load
- Throughput depends on threshold, a

## **Access Timing Delay**



 Time difference between channel load sensing and associated packet access timing

 t<sub>D</sub>: Access timing delay normalized by packet duration

• GEO:  $t_D = 9.20$ 

• LEO :  $t_D = 0.26$ 

L=500 [bit] R=9,600 [bps]

## Throughput Degradation of CLSP



Severe
degradation
in the
presence of
access
timing delay

## Throughput Degradation of CLSP





- In the presence of access timing delay, since the packet access control is done by the past information, the throughput would degrade
- Access control based not on instantaneous channel load but on average channel load

#### Modified CLSP



User transmit his packet with Ptr, or stops transmitting its packet with 1-Ptr

- Hub-station estimate the offered traffic load, G.
- According to the estimated G, the hub-station broadcast the probability, Ptr.
  - Ptr is obtained so that actual offered load is set to the value which gains the maximum throughput.
- User transmits his packets according to Ptr

## Throughput of CDMA ALOHA with MCLSP



- Maximum
  throughput is
  the same as
  one without
  access control.
- Robustness
   against access
   timing delay

#### Retransmission Control Protocol



- If packet error occurs, a user schedules the packet at a later time according to a delay distribution
- This distribution is calculated and broadcast by a hub-station
  - 3. Packet retransmission control (PRC)

## Packet Retransmission Control (PRC)



Transition of users between the originating mode and retransmission mode



- Appropriate distribution of delay is calculated and broadcast
- The distribution is obtained by a observation of channel load
- PRC is equivalent to a control of retransmission offered load, Gr

## Throughput of CDMA ALOHA with PRC



- Maximum
  throughput is
  the same as
  one without
  access control.
- Throughput is almost same as MCLSP
  - Robustness against access timing delay

## What is the optimum access control?

Channel Load Sensing Protocol (CLSP)

- Higher throughput
- Weakness to access timing delay

Modified CLSP (MCLSP)

- Robustness against access timing delay
- No gain in maximum throughput

Packet Retransmission Control (PRC)

- Robustness against access timing delay
- No gain in maximum throughput

?

# Optimal Access Control Protocol (OACP)



#### CLSP:

- O Improvement in maximum throughput
- X Weakness against access timing delay

#### PRC:

- O Robust against access timing delay
- X No improvement in maximum throughput

CLSP + PRC = Optimum

# Optimal Access Control Protocol (OACP)



- Hub-station estimate the offered traffic load, G.
- If the channel load is below

   a, then packet transmission
   is allowed. Otherwise, the
   users move into retransmission mode (CLSP).
- Backlogged packet is controlled according to the retransmission probability broadcast from the hubstation (PRC).

## Throughput of CDMA ALOHA with PRC



- Maximum
  throughput is
  the same as
  CLSP if
  access timing
  delay is
  negligible
- Robustness against access timing delay

# Delay performance of CDMA ALOHA with OACP



## **CDMA Unslotted ALOHA with Buffers**



- Each user is equipped with a certain size of queueing buffers.
- Retransmission packet can be managed by each of users.
- Autonomous control of packet transmission may be possible.

#### CDMA Unslotted ALOHA with Buffers



Schematic of packet flow at each user station

- Each user is equipped with a finite buffer capacity of B packets.
- Packet arriving at an idle status is transmitted immediately.
- Packets are served in a first-in-first-out (FIFO) discipline.
- Busy user attempt to transmit packet with rate p.

## Throughput of CDMA U-ALOHA with Buffers



- The larger buffer size a user has, the more rapidly the throughput is increasing.
- Throughput is almost same as MCLSP or PRC

## Rejection Probability



- X If a packet
  arrives at a user
  with a full buffer,
  this packet is
  rejected
- The larger buffer size a user has, the less rejection probability is

# **Delay Performance**



- The number of busy user increases by increasing the buffer size.
- Average delay increases in compensation for reduction of the rejection of packet transmission.

# CDMA ALOHA for Multimedia signals



- Different media which have different characteristics are handled simultaneously
- CDMA is suitable for handling multimedia signal
  - Multi-rate CDMA
  - Multi-code CDMA

Access control for multimedia signals

- 1 Integrated voice and data system
- 2 High and low bit rate data transmission

## Integrated Voice and Data System

Voice: Real time delivery

Circuit switch mode (Reservation mode)



Voice users have to reserve the channel before they transmit their signals by sending a reservation packet.

Once they get the reservation, they continue to transmit their signal until voice call ends.

If the number of simultaneous established users reaches to a certain threshold, voice users cannot access to get the reservation.

Data: Some tolerance to transmission delay

Packet switch mode



Data users transmit thier packets on the CDMA Unslotted ALOHA.

# Integrated CDMA Voice Signal & CDMA Data Packet (CDMA unslotted ALOHA)



Channel load status seen at hubstation

- Interference from both media
- Priority of voice medium (continuous voice call until call ends)

Necessity of traffic control

## System Model



- Total bandwidth
   W = 20MHz
- Band expansion factor
   N = 312 (=W/R)

#### Voice signal:

- Poisson generation
- Bit rate: R = 32k [bps]
- Exponential signal length
   Length 60.0 [sec]
   Silence period 1.7 [sec]

Talk spurt 1.0 [sec]

## Data packet:

- Poisson generation
- Bit rate : R = 32k [bps]
- Fixed packet length
   L = 500 [bit] (0.01 [sec])

## Traffic Control for Voice and Data Media

# The number of simultaneous voice and data signals, k



Why b > a?

- •The required signal quality of voice < that of data packet
- •The signal quality must be guaranteed for voice signals

## Mean Number of Voice Call



- Voice activity (V.A) improves the number of simultaneous call.
- Access control by counting the number of talk spurt of voice signal

## Data Throughput





Without access control

With access control

## 2. High and Low Bit Rate Data Transmission



Class I: High-bit-rate packet

Class II: Low-bit-rate packet

Multi-rate CDMA system

O Multi-code

- Multi-processing gain
- Multi-modulation



## System Model





#### Class I:

- Poisson generation
- Bit rate MRb [bit/sec]
- Fixed packet length MLb [bits]

#### Class II:

- Poisson generation
- Bit rate Rb [bit/sec]
- Fixed packet lengthLb [bits]

Class I has priority over Class II

#### Channel Status at Hubstation



## Throughput performances



MC-CDMA Slotted ALOHA (Only class I user)



MC-CDMA Slotted ALOHA with MCLSP (class I and II)

## Conclusions

#### Fundamentals of CDMA ALOHA

- Throughput analysis of CDMA ALOHA
- CDMA ALOHA v.s. Narrow Band ALOHA

## Access control techniques for CDMA ALOHA

- CLSP, MCLSP, PRC, OACP
- CDMA ALOHA with Buffers

## Multimedia signal transmission using CDMA ALOHA

- Integrated voice and data system
- Multi-rate transmission using MC-CDMA